5 заметок с тегом

то

Увидеть смерть Вселенной

#φuωkα

Спойлер: не получится.

В окрестностях чёрной дыры время замедляется, а на горизонте событий и вовсе замедляется до нуля (с точки зрения удалённого наблюдателя-домоседа). То есть, следя за падающим в ЧД космонавтом, домосед увидит, что тот всё медленнее и медленнее будет подлетать к горизонту событий, но пересечения горизонта так никогда и не дождётся. Причём с точки зрения самого космонавта он достигает горизонта событий (и даже падает на сингулярность) за вполне конечное время.

Значит, раз домоседу потребуется бесконечное время, чтобы дождаться пересечения горизонта космонавтом, то, казалось бы, верно и обратное — когда космонавт пересечёт горизонт событий, снаружи для него уже пройдёт бесконечное время, т. е. он увидит все события в ускоренном темпе, всё будущее Вселенной вплоть до её конца за какие-то секунды. Так?

Увы, не так. Даже такой радости падающий космонавт лишён. Но это заблуждение настолько распространено, что попало в несколько научно-популярных книг и даже в примечание переводчика в книге Хокинга «The Universe in a Nutshell».

Однако симметрии тут нет. Взгляните на картинку. Слева — чёрная дыра, справа — домосед A, посередине — космонавт B, вверх направлено время (по часам домоседа). Световые конусы определяют границы возможных траекторий — фотоны двигаются по краям светового конуса, остальные объекты — строго внутри.

Чёрная дыра искривляет пространство-время, и это приводит к тому, что внешняя (правая) граница светового конуса наклоняется влево, в сторону ЧД. Соответственно, исходящие от космонавта фотоны отклоняются вверх и достигают домоседа всё позже и позже по мере приближения к ЧД. Фотон, испущенный непосредственно на горизонте, не достигнет домоседа никогда, т. к. его траектория направлена вертикально вверх, параллельно мировой линии домоседа. В этом и проявляется замедление времени.

А вот с входящими фотонами ничего подобного не происходит. Внутренняя (левая) граница светового конуса никуда не наклоняется и остаётся под 45° хоть рядом с горизонтом, хоть внутри ЧД. А значит, космонавт сможет увидеть максимум то, что прилетело к нему справа снизу по диагонали. Ничего выше этой диагонали, никакого будущего он увидеть не сможет. Только прошлое, как и все.

Чуть подробнее тут. А если хотите с формулами — вам cюда.

Банда четырёх

#φuωkα

Эпиграф:  — А сколько у нас шпаг? — Четыре! (с) Мушкетёры

Четырёхимпульс (вектор энергии-импульса) — вещь прекрасная во всех отношениях. Это вектор в четырёхмерном пространстве-времени, в котором слились воедино четыре величины — импульс, энергия, скорость и масса:

1) Импульс (p) получается из трёх пространственных компонент четырёхимпульса.
2) Энергия (E) — это временна́я компонента четырёхимпульса. Что намекает, что энергия — это тоже своего рода импульс, только во времени.
3) Скорость (v) определяется направлением четырёхимпульса, т. е. его наклоном к оси времени. В естественных единицах (где скорость света принята за единицу) скорость тела будет просто равна отношению импульса к энергии: v = p/E.
4) Масса (m) — это модуль (длина) четырёхимпульса. Она считается по «теореме Пифагора» для пространства Минковского: m2 = E2 — p2.

Из этих нехитрых соотношений можно сделать много глубоких выводов. Например, что законы сохранения энергии, импульса и массы — суть один и тот же закон сохранения четырёхимпульса. Но тут надо немного разобраться — что и когда сохраняется?

Вектор — это такой направленный отрезок. Если мы нарисуем отрезок на бумажке и будем крутить бумажку, то его направление, высота и ширина будут меняться, но сам отрезок (а в том числе и его длина) будет оставаться неизменным. Точно так же и с четырёхимпульсом — при смене ИСО скорость, импульс и энергия тела будут меняться, но сам четырёхимпульс (а значит и его длина — масса тела) останется неизменным.

Но ведь энергия и импульс должны сохранятся? Они сохраняются со временем, а не при смене ИСО. Каждый наблюдатель согласится, что энергия и импульс замкнутой системы не меняются со временем, хотя каждый оценит их величину по-своему.

Масса системы — единственное, что сохраняется и со временем, и при смене ИСО. Но тут нас ждёт другой подвох, о котором мы уже говорили, — масса системы не равна сумме масс составляющих её объектов. Масса — производная величина, которая рассчитывается через энергию и импульс всей системы по формуле (4). И если с суммированием энергий составляющих всё просто, то с суммированием импульсов — сложнее. Нельзя просто сложить модули импульсов, т. к. они могут быть направлены в разные стороны. Разнонаправленные импульсы сокращаются, что приводит к уменьшению импульса системы по отношению к сумме модулей импульсов составляющих, а следовательно, к росту массы системы. Например, когда массивная частица распадается на два фотона, масса системы двух фотонов равна массе исходной частицы, хотя сумма масс фотонов равна нулю.

Формула (4) прекрасна сама по себе и вполне способна заменить формулу Эйнштейна (E=mc2), тем более, что из неё её можно вывести. А ещё из неё можно вывести «правила поведения» частиц. У фотона m=0, а значит E=p, а значит по формуле (3) скорость всегда равна 1 (скорости света). У массивной же частицы E>p (иначе (4) не будет выполняться), а потому скорость (p/E) всегда меньше 1. Сделать из массивной частицы безмассовую можно только, добавив ей импульс без энергии. Но где его взять? Для этого нужны частицы, у которых p>E. Это как раз тахионы, гипотетические частицы с мнимой массой, движущиеся быстрее скорости света (p/E>1). Но их, по-видимому, не существует.

Очень подробная переводная статья на geektimes. А картинка отсюда.

Про отношения

#φuωkα

Принцип относительности иногда понимается так, что всё мол зависит от наблюдателя, и у каждого наблюдателя есть своя собственная реальность. Либо наоборот, что относительные величины эфемерны, их как бы и нет «на самом деле».

Ан нет. И мир у всех один, и величины существуют объективно. Если какой-то параметр — относительный, это лишь означает, что он является не свойством объекта, а свойством отношения между двумя (или более) объектами.

Например, брат — это не свойство человека, а свойство отношения между людьми. Допустим, Вася Маше брат, а Пете — не брат. Эти их отношения не меняются от точки зрения, они абсолютны. Что меняется, так это показания «наблюдателя». Маша скажет: «Вася мне брат», а Петя: «А мне нет». Но это не значит, что у них разные реальности в голове, а, наоборот, говорит об их адекватности.

Точно так же скорость или энергия — это не свойство тела, а свойство отношения между телами. Взаимная скорость двух тел абсолютна и не меняется от «точки зрения». Когда мы говорим о системе отсчёта, мы ассоциируем себя с каким-нибудь телом, реальным или мыслимым, и становимся частью отношения, а потому можем говорить просто «скорость тела», подразумевая «по отношению к нам».

Возьмите чистый лист и проведите прямую линию. Чему равен её угол? Вопрос бессмысленный, пока вы не проведёте вторую линию. Теперь угол между ними не меняется, как бы вы не крутили листочек. И что характерно — листочек при этом остаётся одним и тем же листочком. На графике расстояния от времени разные углы как раз соответствуют разным скоростям, а смену ИСО можно понимать как (не совсем обычное) вращение листочка. И при смене наблюдателя мир остаётся одним и тем же миром.

Существует ли пространство-время?

#φuωkα

Когда Эйнштейн работал над общей теорией относительности, он столкнулся с одной проблемой. Получавшаяся геометрия пространства-времени существенно зависела от выбранной системы координат, и сделать её координатно-независимой (ковариантной) никак не получалось.

Выходило так, что с заданными начальными условиями система могла эволюционировать в две разные геометрии (а то и больше), и теория никак не предсказывала, какая именно должна получиться.

Промучившись с этой проблемой целых два года, Эйнштейн наконец решил посмотреть, как будут вести себя частицы в этих разных вариантах пространства. И выяснилось, что точки, где частицы взаимодействуют друг с другом, имеют один и тот же гравитационный потенциал во всех альтернативах, несмотря на то, что траектории частиц выглядели по-разному. Более подробный анализ показал, что никакими наблюдениями отличить одну альтернативу от другой невозможно, а значит они эквивалентны и описывают одну и ту же реальность.

Отсюда он сделал вывод, что точки пространства-времени не имеют физического смысла сами по себе, пока отсутствует материя, которая через эти точки движется. Или другими словами: только встреча в одной точке двух и более материальных объектов имеет физический смысл. Таким образом пространство-время как бы строится из взаимодействий, из причинно-следственных связей.

Не все согласились с такой точкой зрения, и до сих пор ведутся жаркие дебаты. Но, кажется, это очень важный пункт для успешных теорий квантовой гравитации. Например, в теории причинной динамической триангуляции четырёхмерность пространства-времени автоматически возникает из взаимодействия элементарных симплексов — квантов пространства-времени.

Подробная история вопроса (по-английски).

Частицы с массой и без

#φuωkα

Частицы с ненулевой массой не могут разогнаться до скорости света. Происходит это потому, что чем больше скорость частицы, тем меньше ускорение, создаваемое одной и той же силой. Т. е. чем больше скорость, тем труднее частицу дальше разгонять. При приближении к скорости света это ускорение стремится к нулю, какую силу ни приложи. Ну или так: если вдруг частица разгонится до скорости света, то в формуле расчёта энергии произойдёт деление на ноль, и энергия окажется бесконечной. А это, как понимаете, невозможно.

Другое дело частицы без массы. У них, наоборот, ноль (масса) оказывается в числителе, и энергия получается нулевой. А раз нет энергии, то нет и частицы. Единственный способ выкрутиться — это летать со скоростью света. Тогда в формуле будет деление нуля на ноль, а это — неопределённость, результат может быть любым. Поэтому энергия фотона рассчитывается по другой формуле, через частоту, а не через массу, которой нет.

Математическая модель открывает также возможность для гипотетических частиц с мнимой массой — тахионов. Они, наоборот, могут двигаться только со сверхсветовой скоростью. И чем медленнее, тем больше их энергия. Но их существование под вопросом, т. к. они нарушают принцип причинности.